skip to main content


Search for: All records

Creators/Authors contains: "Xue, Xiang-Xiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We measure the enclosed Milky Way mass profile to Galactocentric distances of ∼70 and ∼50 kpc using the smooth, diffuse stellar halo samples of Bird et al. The samples are Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) K giants (KG) and SDSS/SEGUE blue horizontal branch (BHB) stars with accurate metallicities. The 3D kinematics are available through LAMOST and SDSS/SEGUE distances and radial velocities and Gaia DR2 proper motions. Two methods are used to estimate the enclosed mass: 3D spherical Jeans equation and Evans et al. tracer mass estimator (TME). We remove substructure via the Xue et al. method based on integrals of motion. We evaluate the uncertainties on our estimates due to random sampling noise, systematic distance errors, the adopted density profile, and non-virialization and non-spherical effects of the halo. The tracer density profile remains a limiting systematic in our mass estimates, although within these limits we find reasonable agreement across the different samples and the methods applied. Out to ∼70 and ∼50 kpc, the Jeans method yields total enclosed masses of 4.3 ± 0.95 (random) ±0.6 (systematic) × 1011 M⊙ and 4.1 ± 1.2 (random) ±0.6 (systematic) × 1011 M⊙ for the KG and BHB stars, respectively. For the KG and BHB samples, we find a dark matter virial mass of $M_{200}=0.55^{+0.15}_{-0.11}$ (random) ±0.083 (systematic) × 1012 M⊙ and $M_{200}=1.00^{+0.67}_{-0.33}$ (random) ±0.15 (systematic) × 1012 M⊙, respectively.

     
    more » « less
  2. null (Ed.)
  3. Abstract The eighteenth data release (DR18) of the Sloan Digital Sky Survey (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs or “Mappers”: the Milky Way Mapper (MWM), the Black Hole Mapper (BHM), and the Local Volume Mapper. This data release contains extensive targeting information for the two multiobject spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration and scientifically focused components. DR18 also includes ∼25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024